Frequently Asked Questions about Agentic AI

· 4 min read
Frequently Asked Questions about Agentic AI

Agentic AI is a term used to describe autonomous, goal-oriented, systems that are able to perceive their environment, take decisions, and act to achieve specific goals. Unlike traditional AI, which is often rule-based or reactive, agentic AI systems can learn, adapt, and operate with a degree of independence. Agentic AI is a powerful tool for cybersecurity. It allows continuous monitoring, real time threat detection and proactive response.

What are some examples of real-world agentic AI in cybersecurity? Agentic AI is used in cybersecurity.

Autonomous threat detection and response platforms that continuously monitor networks and endpoints for malicious activity
AI-powered vulnerability scans that prioritize and identify security flaws within applications and infrastructure
Intelligent threat intelligence systems gather data from multiple sources and analyze it to provide proactive protection against emerging threats
Automated incident response tools can mitigate and contain cyber attacks without the need for human intervention
AI-driven fraud detection solutions that identify and prevent fraudulent activities in real-time
Agentic AI helps to address the cybersecurity skills gaps by automating repetitive and time-consuming security tasks currently handled manually. Agentic AI systems free human experts from repetitive and time-consuming tasks like continuous monitoring, vulnerability scanning and incident response. Agentic AI's insights and recommendations can also help less experienced security personnel to make better decisions and respond more efficiently to potential threats. What are the implications of agentic AI on compliance and regulatory requirements for cybersecurity? Agentic AI can help organizations meet compliance and regulatory requirements more effectively by providing continuous monitoring, real-time threat detection, and automated remediation capabilities.  https://www.linkedin.com/posts/qwiet_gartner-appsec-qwietai-activity-7203450652671258625-Nrz0  can ensure that security controls are consistently enforced, vulnerabilities are promptly addressed, and security incidents are properly documented and reported. The use of agentic AI raises new compliance concerns, including ensuring transparency, accountability and fairness in AI decision-making, as well as protecting privacy and security for data used to train and analyze AI. How can organizations integrate agentic AI into their existing security tools and processes? To successfully integrate agentic AI into existing security tools and processes, organizations should:

Assess their current security infrastructure and identify areas where agentic AI can provide the most value
Develop a clear strategy and roadmap for agentic AI adoption, aligned with overall security goals and objectives
Make sure that AI agent systems are compatible and can exchange data and insights seamlessly with existing security tools.
Support and training for security personnel in the use of agentic AI systems and their collaboration.
Create governance  machine learning security testing  to oversee the ethical and responsible use of AI agents in cybersecurity
What are some emerging trends in agentic AI and their future directions? Some emerging trends and directions for agentic artificial intelligence in cybersecurity include:

Increased collaboration and coordination between autonomous agents across different security domains and platforms
Development of more advanced and contextually aware AI models that can adapt to complex and dynamic security environments
Integrating agentic AI into other emerging technologies such as cloud computing, blockchain, and IoT Security
Exploration of novel approaches to AI security, such as homomorphic encryption and federated learning, to protect AI systems and data
Advancement of explainable AI techniques to improve transparency and trust in autonomous security decision-making
Agentic AI can provide a powerful defense against APTs and targeted attacks by continuously monitoring networks and systems for subtle signs of malicious activity. Autonomous agents are able to analyze massive amounts of data in real time, identifying patterns that could indicate a persistent and stealthy threat. By learning from past attacks and adapting to new attack techniques, agentic AI can help organizations detect and respond to APTs more quickly and effectively, minimizing the potential impact of a breach.

What are the advantages of using agentic AI to detect real-time threats and monitor security? The benefits of using agentic AI for continuous security monitoring and real-time threat detection include:

24/7 monitoring of networks, applications, and endpoints for potential security incidents
Prioritization and rapid identification of threats according to their impact and severity
Security teams can reduce false alarms and fatigue by reducing the number of false positives.
Improved visibility into complex and distributed IT environments
Ability to detect novel and evolving threats that might evade traditional security controls
Faster response times and minimized potential damage from security incidents
How can agentic AI improve incident response and remediation processes? Agentic AI can significantly enhance incident response and remediation processes by:

Automated detection and triaging of security incidents according to their severity and potential impact
Providing contextual insights and recommendations for effective incident containment and mitigation
Automating and orchestrating incident response workflows on multiple security tools
Generating detailed reports and documentation to support compliance and forensic purposes
Learning from incidents to continuously improve detection and response capabilities
Enabling faster and more consistent incident remediation, reducing the overall impact of security breaches
What are some of the considerations when training and upgrading security teams so that they can work effectively with AI agent systems? To ensure that security teams can effectively leverage agentic AI systems, organizations should:


Provide comprehensive training on the capabilities, limitations, and proper use of agentic AI tools
Encourage security personnel to collaborate with AI systems, and provide feedback on improvements.
Create clear guidelines and protocols for human-AI interactions, including when AI recommendations should be trusted and when issues should be escalated to human review.
Invest in programs to help security professionals acquire the technical and analytic skills they need to interpret and act on AI-generated insights
Encourage cross-functional collaboration between security, data science, and IT teams to ensure a holistic approach to agentic AI adoption and use
How can organizations balance?

How can we balance the benefits of AI and human decision-making with the necessity for human oversight in cybersecurity? To strike the right balance between leveraging agentic AI and maintaining human oversight in cybersecurity, organizations should:

Establish clear roles and responsibilities for human and AI decision-makers, ensuring that critical security decisions are subject to human review and approval
Implement transparent and explainable AI techniques that allow security personnel to understand and trust the reasoning behind AI recommendations
Develop robust testing and validation processes to ensure the accuracy, reliability, and safety of AI-generated insights and actions
Maintain human-in-the-loop approaches for high-stakes security scenarios, such as incident response and threat hunting
Encourage a culture that is responsible in the use of AI, highlighting the importance of human judgement and accountability when it comes to cybersecurity decisions.
Regularly monitor and audit AI systems to identify potential biases, errors, or unintended consequences, and make necessary adjustments to ensure optimal performance and alignment with organizational security goals